Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Am J Physiol Endocrinol Metab ; 326(4): E407-E416, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38324261

RESUMO

The tricarboxylic acid (TCA) cycle metabolite fumarate nonenzymatically reacts with the amino acid cysteine to form S-(2-succino)cysteine (2SC), referred to as protein succination. The immunometabolite itaconate accumulates during lipopolysaccharide (LPS) stimulation of macrophages and microglia. Itaconate nonenzymatically reacts with cysteine residues to generate 2,3-dicarboxypropylcysteine (2,3-DCP), referred to as protein dicarboxypropylation. Since fumarate and itaconate levels dynamically change in activated immune cells, the levels of both 2SC and 2,3-DCP reflect the abundance of these metabolites and their capacity to modify protein thiols. We generated ethyl esters of 2SC and 2,3-DCP from protein hydrolysates and used stable isotope dilution mass spectrometry to determine the abundance of these in LPS-stimulated Highly Aggressively Proliferating Immortalized (HAPI) microglia. To quantify the stoichiometry of the succination and dicarboxypropylation, reduced cysteines were alkylated with iodoacetic acid to form S-carboxymethylcysteine (CMC), which was then esterified. Itaconate-derived 2,3-DCP, but not fumarate-derived 2SC, increased in LPS-treated HAPI microglia. Stoichiometric measurements demonstrated that 2,3-DCP increased from 1.57% to 9.07% of total cysteines upon LPS stimulation. This methodology to simultaneously distinguish and quantify both 2SC and 2,3-DCP will have broad applications in the physiology of metabolic diseases. In addition, we find that available anti-2SC antibodies also detect the structurally similar 2,3-DCP, therefore "succinate moiety" may better describe the antigen recognized.NEW & NOTEWORTHY Itaconate and fumarate have roles as immunometabolites modulating the macrophage response to inflammation. Both immunometabolites chemically modify protein cysteine residues to modulate the immune response. Itaconate and fumarate levels change dynamically, whereas their stable protein modifications can be quantified by mass spectrometry. This method distinguishes itaconate and fumarate-derived protein modifications and will allow researchers to quantify their contributions in isolated cell types and tissues across a range of metabolic diseases.


Assuntos
Compostos Alílicos , Cisteína , Cisteína/análogos & derivados , Hidrocarbonetos Clorados , Doenças Metabólicas , Succinatos , Humanos , Cisteína/metabolismo , Lipopolissacarídeos/farmacologia , Proteínas , Fumaratos/metabolismo
2.
J Cachexia Sarcopenia Muscle ; 15(1): 124-137, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38062911

RESUMO

BACKGROUND: More than 650 million people are obese (BMI > 30) worldwide, which increases their risk for several metabolic diseases and cancer. While cachexia and obesity are at opposite ends of the weight spectrum, leading many to suggest a protective effect of obesity against cachexia, mechanistic support for obesity's benefit is lacking. Given that obesity and cachexia are both accompanied by metabolic dysregulation, we sought to investigate the impact of obesity on skeletal muscle mass loss and mitochondrial dysfunction in murine cancer cachexia. METHODS: Male C57BL/6 mice were given a purified high fat or standard diet for 16 weeks before being implanted with 106 Lewis lung carcinoma (LLC) cells. Mice were monitored for 25 days, and hindlimb muscles were collected for cachexia indices and mitochondrial assessment via western blotting, high-resolution respirometry and transmission electron microscopy (TEM). RESULTS: Obese LLC mice experienced significant tumour-free body weight loss similar to lean (-12.8% vs. -11.8%, P = 0.0001) but had reduced survival (33.3% vs. 6.67%, χ2  = 10.04, P = 0.0182). Obese LLC mice had reduced muscle weights (-24%, P < 0.0354) and mCSA (-16%, P = 0.0004) with similar activation of muscle p65 (P = 0.0337), and p38 (P = 0.0008). ADP-dependent coupled respiration was reduced in both Obese and Obese LLC muscle (-30%, P = 0.0072) consistent with reductions in volitional cage activity (-39%, P < 0.0001) and grip strength (-41%, P < 0.0001). TEM revealed stepwise reductions in intermyofibrillar and subsarcolemmal mitochondrial size with Obese (IMF: -37%, P = 0.0009; SS: -21%, P = 0.0101) and LLC (IMF: -40%, P = 0.0019; SS: -27%, P = 0.0383) mice. Obese LLC mice had increased pAMPK (T172; P = 0.0103) and reduced FIS1 (P = 0.0029) and DRP1 (P < 0.0001) mitochondrial fission proteins, which were each unchanged in Lean LLC. Further, mitochondrial TEM analysis revealed that Obese LLC mice had an accumulation of damaged and dysfunctional mitochondria (IMF: 357%, P = 0.0395; SS: 138%, P = 0.0174) in concert with an accumulation of p62 (P = 0.0328) suggesting impaired autophagy and clearance of damaged mitochondria. Moreover, we observed increases in electron lucent vacuoles only in Obese LLC muscle (IMF: 421%, P = 0.0260; SS: 392%, P = 0.0192), further supporting an accumulation of damaged materials that cannot be properly cleared in the obese cachectic muscle. CONCLUSIONS: Taken together, these results demonstrate that obesity is not protective against cachexia and suggest exacerbated impairments to mitochondrial function and quality control with a particular disruption in the removal of damaged mitochondria. Our findings highlight the need for consideration of the severity of obesity and pre-existing metabolic conditions when determining the impact of weight status on cancer-induced cachexia and functional mitochondrial deficits.


Assuntos
Caquexia , Carcinoma Pulmonar de Lewis , Humanos , Masculino , Animais , Camundongos , Caquexia/patologia , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Atrofia Muscular/patologia , Carcinoma Pulmonar de Lewis/complicações , Carcinoma Pulmonar de Lewis/patologia , Obesidade/complicações , Obesidade/patologia , Músculo Esquelético/patologia
3.
Redox Biol ; 67: 102932, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37883842

RESUMO

The NDUFS4 knockout (KO) mouse phenotype resembles the human Complex I deficiency Leigh Syndrome. The irreversible succination of protein thiols by fumarate is increased in select regions of the NDUFS4 KO brain affected by neurodegeneration. We report that dihydrolipoyllysine-residue succinyltransferase (DLST), a component of the α-ketoglutarate dehydrogenase complex (KGDHC) of the tricarboxylic acid (TCA) cycle, is succinated in the affected regions of the NDUFS4 KO brain. Succination of DLST reduced KGDHC activity in the brainstem (BS) and olfactory bulb (OB) of KO mice. The defective production of KGDHC derived succinyl-CoA resulted in decreased mitochondrial substrate level phosphorylation (SLP), further aggravating the existing oxidative phosphorylation (OXPHOS) ATP deficit. Protein succinylation, an acylation modification that requires succinyl-CoA, was reduced in the KO mice. Modeling succination of a cysteine in the spatial vicinity of the DLST active site or introduction of succinomimetic mutations recapitulates these metabolic deficits. Our data demonstrate that the biochemical deficit extends beyond impaired Complex I assembly and OXPHOS deficiency, functionally impairing select components of the TCA cycle to drive metabolic perturbations in affected neurons.


Assuntos
Ciclo do Ácido Cítrico , Complexo Cetoglutarato Desidrogenase , Camundongos , Animais , Humanos , Complexo Cetoglutarato Desidrogenase/genética , Complexo Cetoglutarato Desidrogenase/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Camundongos Knockout , Fosforilação Oxidativa , Trifosfato de Adenosina/metabolismo
4.
bioRxiv ; 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37808776

RESUMO

HIV-associated neurological disorder (HAND) is a serious complication of HIV infection, marked by neurotoxicity induced by viral proteins like Tat. Substance abuse exacerbates neurocognitive impairment in people living with HIV. There is an urgent need for effective therapeutic strategies to combat HAND comorbid with Cocaine Use Disorder (CUD). Our analysis of the HIV and cocaine-induced transcriptomes in primary cortical cultures revealed a significant overexpression of the macrophage-specific gene, aconitate decarboxylase 1 (Acod1), caused by the combined insults of HIV and cocaine. ACOD1 protein converts the tricarboxylic acid intermediate cis-aconitate into itaconate during the activation of inflammation. The itaconate produced facilitates cytokine production and subsequently activates anti-inflammatory transcription factors, shielding macrophages from infection-induced cell death. While the role of itaconate' in limiting inflammation has been studied in peripheral macrophages, its immunometabolic function remains unexplored in HIV and cocaine-exposed microglia. We assessed in this model system the potential of 4-octyl-itaconate (4OI), a cell-penetrable esterified form of itaconate known for its potent anti-inflammatory properties and potential therapeutic applications. We administered 4OI to primary cortical cultures exposed to Tat and cocaine. 4OI treatment increased the number of microglial cells in both untreated and Tat±Cocaine-treated cultures and also reversed the morphological altercations induced by Tat and cocaine. In the presence of 4OI, microglial cells also appeared more ramified, resembling the quiescent microglia. Consistent with these results, 4OI treatment inhibited the secretion of the proinflammatory cytokines IL-1α, IL-1ß, IL-6, and MIP1-α induced by Tat and cocaine. Transcriptome profiling further determined that Nrf2 target genes such as NAD(P)H quinone oxidoreductase 1 (Nqo1), Glutathione S-transferase Pi (Gstp1), and glutamate cysteine ligase catalytic (Gclc), were most significantly activated in Tat-4OI treated cultures, relative to Tat alone. Further, genes associated with cytoskeleton dynamics in inflammatory microglia were downregulated by 4OI treatment. Together, the results strongly suggest 4-octyl-itaconate holds promise as a potential candidate for therapeutic development aimed at addressing HAND coupled with CUD comorbidities.

5.
Nature ; 615(7952): 490-498, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36890227

RESUMO

Metabolic rewiring underlies the effector functions of macrophages1-3, but the mechanisms involved remain incompletely defined. Here, using unbiased metabolomics and stable isotope-assisted tracing, we show that an inflammatory aspartate-argininosuccinate shunt is induced following lipopolysaccharide stimulation. The shunt, supported by increased argininosuccinate synthase (ASS1) expression, also leads to increased cytosolic fumarate levels and fumarate-mediated protein succination. Pharmacological inhibition and genetic ablation of the tricarboxylic acid cycle enzyme fumarate hydratase (FH) further increases intracellular fumarate levels. Mitochondrial respiration is also suppressed and mitochondrial membrane potential increased. RNA sequencing and proteomics analyses demonstrate that there are strong inflammatory effects resulting from FH inhibition. Notably, acute FH inhibition suppresses interleukin-10 expression, which leads to increased tumour necrosis factor secretion, an effect recapitulated by fumarate esters. Moreover, FH inhibition, but not fumarate esters, increases interferon-ß production through mechanisms that are driven by mitochondrial RNA (mtRNA) release and activation of the RNA sensors TLR7, RIG-I and MDA5. This effect is recapitulated endogenously when FH is suppressed following prolonged lipopolysaccharide stimulation. Furthermore, cells from patients with systemic lupus erythematosus also exhibit FH suppression, which indicates a potential pathogenic role for this process in human disease. We therefore identify a protective role for FH in maintaining appropriate macrophage cytokine and interferon responses.


Assuntos
Fumarato Hidratase , Interferon beta , Macrófagos , Mitocôndrias , RNA Mitocondrial , Humanos , Argininossuccinato Sintase/metabolismo , Ácido Argininossuccínico/metabolismo , Ácido Aspártico/metabolismo , Respiração Celular , Citosol/metabolismo , Fumarato Hidratase/antagonistas & inibidores , Fumarato Hidratase/genética , Fumarato Hidratase/metabolismo , Fumaratos/metabolismo , Interferon beta/biossíntese , Interferon beta/imunologia , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Lúpus Eritematoso Sistêmico/enzimologia , Macrófagos/enzimologia , Macrófagos/imunologia , Macrófagos/metabolismo , Potencial da Membrana Mitocondrial , Metabolômica , Mitocôndrias/genética , Mitocôndrias/metabolismo , RNA Mitocondrial/metabolismo
6.
Free Radic Biol Med ; 148: 70-82, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31883977

RESUMO

C/EBP homologous protein (CHOP) is a transcription factor that is elevated in adipose tissue across many models of diabetes and metabolic stress. Although increased CHOP levels are associated with the terminal response to endoplasmic reticulum stress and apoptosis, there is no evidence for CHOP mediated apoptosis in the adipose tissue during diabetes. CHOP protein levels increase in parallel with protein succination, a fumarate derived cysteine modification, in the adipocyte during metabolic stress. We investigated the factors contributing to sustained CHOP proteins levels in the adipocyte, with an emphasis on the regulation of CHOP protein turnover by metabolite-driven modification of Keap1 cysteines. CHOP protein stability was investigated in conditions of nutrient stress due to high glucose or elevated fumarate (fumarase knockdown model); where cysteine succination is specifically elevated. CHOP protein turnover is significantly reduced in models of elevated glucose and fumarate with a ~30% increase in CHOP stability (p > 0.01), in part due to decreased CHOP phosphorylation. Sustained CHOP levels occur in parallel with elevated heme-oxygenase-1, a production of increased Nrf2 transcriptional activity and Keap1 modification. While Keap1 is directly succinated in the presence of excess fumarate derived from genetic knockdown of fumarase (fumarate levels are elevated >20-fold), it is the oxidative modification of Keap1 that predominates in adipocytes matured in high glucose (fumarate increases 4-5 fold). Elevated fumarate indirectly regulates CHOP stability through the induction of oxidative stress. The antioxidant N-acetylcysteine (NAC) reduces fumarate levels, protein succination and CHOP levels in adipocytes matured in high glucose. Elevated CHOP does not contribute elevated apoptosis in adipocytes, but plays a redox-dependent role in decreasing the adipocyte secretion of interleukin-13, an anti-inflammatory chemokine. NAC treatment restores adipocyte IL-13 secretion, confirming the redox-dependent regulation of a potent anti-inflammatory eotaxin. This study demonstrates that physiological increases in the metabolite fumarate during high glucose exposure contributes to the presence of oxidative stress and sustained CHOP levels in the adipocyte during diabetes. The results reveal a novel metabolic link between mitochondrial metabolic stress and reduced anti-inflammatory adipocyte signaling as a consequence of reduced CHOP protein turnover.


Assuntos
Fumaratos , Fator 2 Relacionado a NF-E2 , Adipócitos/metabolismo , Apoptose , Estresse do Retículo Endoplasmático , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Estresse Oxidativo , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo
7.
Nat Chem Biol ; 15(4): 391-400, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718813

RESUMO

Hereditary cancer disorders often provide an important window into novel mechanisms supporting tumor growth. Understanding these mechanisms thus represents a vital goal. Toward this goal, here we report a chemoproteomic map of fumarate, a covalent oncometabolite whose accumulation marks the genetic cancer syndrome hereditary leiomyomatosis and renal cell carcinoma (HLRCC). We applied a fumarate-competitive chemoproteomic probe in concert with LC-MS/MS to discover new cysteines sensitive to fumarate hydratase (FH) mutation in HLRCC cell models. Analysis of this dataset revealed an unexpected influence of local environment and pH on fumarate reactivity, and enabled the characterization of a novel FH-regulated cysteine residue that lies at a key protein-protein interface in the SWI-SNF tumor-suppressor complex. Our studies provide a powerful resource for understanding the covalent imprint of fumarate on the proteome and lay the foundation for future efforts to exploit this distinct aspect of oncometabolism for cancer diagnosis and therapy.


Assuntos
Fumaratos/metabolismo , Leiomiomatose/metabolismo , Síndromes Neoplásicas Hereditárias/metabolismo , Neoplasias Cutâneas/metabolismo , Neoplasias Uterinas/metabolismo , Linhagem Celular Tumoral , Cromatografia Líquida/métodos , Cisteína , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Leiomiomatose/genética , Modelos Biológicos , Síndromes Neoplásicas Hereditárias/genética , Proteômica , Transdução de Sinais , Neoplasias Cutâneas/genética , Espectrometria de Massas em Tandem/métodos , Neoplasias Uterinas/genética
8.
Mol Cell Proteomics ; 18(3): 504-519, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30587509

RESUMO

The fumarate ester dimethyl fumarate (DMF) has been introduced recently as a treatment for relapsing remitting multiple sclerosis (RRMS), a chronic inflammatory condition that results in neuronal demyelination and axonal loss. DMF is known to act by depleting intracellular glutathione and modifying thiols on Keap1 protein, resulting in the stabilization of the transcription factor Nrf2, which in turn induces the expression of antioxidant response element genes. We have previously shown that DMF reacts with a wide range of protein thiols, suggesting that the complete mechanisms of action of DMF are unknown. Here, we investigated other intracellular thiol residues that may also be irreversibly modified by DMF in neurons and astrocytes. Using mass spectrometry, we identified 24 novel proteins that were modified by DMF in neurons and astrocytes, including cofilin-1, tubulin and collapsin response mediator protein 2 (CRMP2). Using an in vitro functional assay, we demonstrated that DMF-modified cofilin-1 loses its activity and generates less monomeric actin, potentially inhibiting its cytoskeletal remodeling activity, which could be beneficial in the modulation of myelination during RRMS. DMF modification of tubulin did not significantly impact axonal lysosomal trafficking. We found that the oxygen consumption rate of N1E-115 neurons and the levels of proteins related to mitochondrial energy production were only slightly affected by the highest doses of DMF, confirming that DMF treatment does not impair cellular respiratory function. In summary, our work provides new insights into the mechanisms supporting the neuroprotective and remyelination benefits associated with DMF treatment in addition to the antioxidant response by Nrf2.


Assuntos
Astrócitos/metabolismo , Cisteína/efeitos dos fármacos , Fumarato de Dimetilo/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Neurônios/metabolismo , Células 3T3-L1 , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Células Cultivadas , Cofilina 1/química , Cofilina 1/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Espectrometria de Massas , Camundongos , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Ratos , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo
9.
Int J Gynecol Pathol ; 37(5): 421-430, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28863073

RESUMO

Leiomyoma with bizarre nuclei (LM-BN), is a variant of uterine smooth muscle tumor with atypical histologic features. Although some LM-BN share several significant genetic alterations with leiomyosarcoma, including p16 and p53, the underlying tumorigenesis of LM-BN remains largely unknown. As we previously reported, LM-BN can be divided into 2 subtypes, type I and type II, based on different nuclear features. Type I LM-BN have similar histologic features as uterine smooth muscle tumors with fumarate hydratase (FH) alterations. In this study, we examined FH expression and FH mutations in 77 LM-BN (40 type I cases and 37 type II cases). FH expression was examined by immunohistochemistry using S-(2-succino)-cysteine antibodies (2SC, a protein modification associated with FH inactivation and subsequent fumarate accumulation) and FH antibodies (FH gene products). Seventy-two LM-BN tumors underwent Sanger sequencing to detect FH mutations. We found that 51% (39/77) of LM-BN showed FH alterations detected by immunohistochemistry with both 2SC and FH. Mutational analysis showed that 21% (15/72) of LM-BN harbored FH gene mutations. Further analysis revealed that 85% (34/40) of those with FH alterations were type I LM-BN while 19% (7/37) were type II LM-BN. Our findings suggest that over half of histologically diagnosed LM-BN may be related to FH alterations or FH mutations and the majority of these have the characteristic histologic features of type I LM-BN.


Assuntos
Fumarato Hidratase/genética , Leiomioma/enzimologia , Leiomioma/genética , Neoplasias Uterinas/enzimologia , Neoplasias Uterinas/genética , Adulto , Idoso , Biomarcadores Tumorais/análise , Núcleo Celular/patologia , Análise Mutacional de DNA , Feminino , Humanos , Leiomioma/patologia , Pessoa de Meia-Idade , Mutação , Neoplasias Uterinas/patologia , Adulto Jovem
10.
Cell Rep ; 20(13): 3135-3148, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-28954230

RESUMO

We explored the role of the Krebs cycle enzyme fumarate hydratase (FH) in glucose-stimulated insulin secretion (GSIS). Mice lacking Fh1 in pancreatic ß cells (Fh1ßKO mice) appear normal for 6-8 weeks but then develop progressive glucose intolerance and diabetes. Glucose tolerance is rescued by expression of mitochondrial or cytosolic FH but not by deletion of Hif1α or Nrf2. Progressive hyperglycemia in Fh1ßKO mice led to dysregulated metabolism in ß cells, a decrease in glucose-induced ATP production, electrical activity, cytoplasmic [Ca2+]i elevation, and GSIS. Fh1 loss resulted in elevated intracellular fumarate, promoting succination of critical cysteines in GAPDH, GMPR, and PARK 7/DJ-1 and cytoplasmic acidification. Intracellular fumarate levels were increased in islets exposed to high glucose and in islets from human donors with type 2 diabetes (T2D). The impaired GSIS in islets from diabetic Fh1ßKO mice was ameliorated after culture under normoglycemic conditions. These studies highlight the role of FH and dysregulated mitochondrial metabolism in T2D.


Assuntos
Diabetes Mellitus Tipo 2/genética , Fumarato Hidratase/deficiência , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Camundongos
11.
Am J Physiol Cell Physiol ; 313(5): C487-C500, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28768641

RESUMO

IL-6 and leukemia inhibitory factor (LIF), members of the IL-6 family of cytokines, play recognized paradoxical roles in skeletal muscle mass regulation, being associated with both growth and atrophy. Overload or muscle contractions can induce a transient increase in muscle IL-6 and LIF expression, which has a regulatory role in muscle hypertrophy. However, the cellular mechanisms involved in this regulation have not been completely identified. The induction of mammalian target of rapamycin complex 1 (mTORC1)-dependent myofiber protein synthesis is an established regulator of muscle hypertrophy, but the involvement of the IL-6 family of cytokines in this process is poorly understood. Therefore, we investigated the acute effects of IL-6 and LIF administration on mTORC1 signaling and protein synthesis in C2C12 myotubes. The role of glycoprotein 130 (gp130) receptor and downstream signaling pathways, including phosphoinositide 3-kinase (PI3K)-Akt-mTORC1 and signal transducer and activator of transcription 3 (STAT3)-suppressor of cytokine signaling 3 (SOCS3), was investigated by administration of specific siRNA or pharmaceutical inhibitors. Acute administration of IL-6 and LIF induced protein synthesis, which was accompanied by STAT3 activation, Akt-mTORC1 activation, and increased SOCS3 expression. This induction of protein synthesis was blocked by both gp130 siRNA knockdown and Akt inhibition. Interestingly, STAT3 inhibition or Akt downstream mTORC1 signaling inhibition did not fully block the IL-6 or LIF induction of protein synthesis. SOCS3 siRNA knockdown increased basal protein synthesis and extended the duration of the protein synthesis induction by IL-6 and LIF. These results demonstrate that either IL-6 or LIF can activate gp130-Akt signaling axis, which induces protein synthesis via mTORC1-independent mechanisms in cultured myotubes. However, IL-6- or LIF-induced SOCS3 negatively regulates the activation of myotube protein synthesis.


Assuntos
Interleucina-6/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , Biossíntese de Proteínas/fisiologia , Animais , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Células Cultivadas , Citocinas/farmacologia , Citocinas/fisiologia , Interleucina-6/farmacologia , Fator Inibidor de Leucemia/farmacologia , Fator Inibidor de Leucemia/fisiologia , Camundongos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Mioblastos/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos
12.
Mol Cancer ; 16(1): 101, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28592321

RESUMO

Uterine smooth muscle tumors range from benign leiomyomas to malignant leiomyosarcomas. Based on numerous molecular studies, leiomyomas and leiomyosarcomas mostly lack shared mutations and the majority of tumors are believed to develop through distinct mechanisms. To further characterize the molecular variability among uterine smooth muscle tumors, and simultaneously insinuate their potential malignant progression, we examined the frequency of known genetic leiomyoma driver alterations (MED12 mutations, HMGA2 overexpression, biallelic FH inactivation) in 65 conventional leiomyomas, 94 histopathological leiomyoma variants (18 leiomyomas with bizarre nuclei, 22 cellular, 29 highly cellular, and 25 mitotically active leiomyomas), and 51 leiomyosarcomas. Of the 210 tumors analyzed, 107 had mutations in one of the three driver genes. No tumor had more than one mutation confirming that all alterations are mutually exclusive. MED12 mutations were the most common alterations in conventional and mitotically active leiomyomas and leiomyosarcomas, while leiomyomas with bizarre nuclei were most often FH deficient and cellular tumors showed frequent HMGA2 overexpression. Highly cellular leiomyomas displayed the least amount of alterations leaving the majority of tumors with no known driver aberration. Our results indicate that based on the molecular background, histopathological leiomyoma subtypes do not only differ from conventional leiomyomas, but also from each other. The presence of leiomyoma driver alterations in nearly one third of leiomyosarcomas suggests that some tumors arise through leiomyoma precursor lesion or that these mutations provide growth advantage also to highly aggressive cancers. It is clinically relevant to understand the molecular background of various smooth muscle tumor subtypes, as it may lead to improved diagnosis and personalized treatments in the future.


Assuntos
Biomarcadores Tumorais , Fumarato Hidratase/genética , Proteína HMGA2/genética , Complexo Mediador/genética , Tumor de Músculo Liso/genética , Tumor de Músculo Liso/patologia , Neoplasias Uterinas/genética , Neoplasias Uterinas/patologia , Análise Mutacional de DNA , Feminino , Fumarato Hidratase/metabolismo , Expressão Gênica , Proteína HMGA2/metabolismo , Humanos , Complexo Mediador/metabolismo , Mutação , Gradação de Tumores , Estudos Retrospectivos , Tumor de Músculo Liso/metabolismo , Neoplasias Uterinas/metabolismo
13.
Clin Sarcoma Res ; 7: 8, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28484589

RESUMO

BACKGROUND: Mutations in isocitrate dehydrogenase (IDH)1 or -2 are found in ~50% of conventional central chondrosarcomas and in up to 87% of their assumed benign precursors enchondromas. The mutant enzyme acquires the activity to convert α-ketoglutarate into the oncometabolite d-2-hydroxyglutarate (d-2-HG), which competitively inhibits α-ketoglutarate dependent enzymes such as histone- and DNA demethylases. METHODS: We therefore evaluated the effect of IDH1 or -2 mutations on histone modifications (H3K4me3, H3K9me3 and H3K27me3), chromatin remodeler ATRX expression, DNA modifications (5-hmC and 5-mC), and TET1 subcellular localization in a genotyped cohort (IDH, succinate dehydrogenase (SDH) and fumarate hydratase (FH)) of enchondromas and central chondrosarcomas (n = 101) using immunohistochemistry. RESULTS: IDH1 or -2 mutations were found in 60.8% of the central cartilaginous tumours, while mutations in FH and SDH were absent. The mutation status did not correlate with outcome. Chondrosarcomas are strongly positive for the histone modifications H3K4me3, H3K9me3 and H3K27me3, which was independent of the IDH1 or -2 mutation status. Two out of 36 chondrosarcomas (5.6%) show complete loss of ATRX. Levels of 5-hmC and 5-mC are highly variable in central cartilaginous tumours and are not associated with mutation status. In tumours with loss of 5-hmC, expression of TET1 was more prominent in the cytoplasm than the nucleus (p = 0.0001). CONCLUSIONS: In summary, in central chondrosarcoma IDH1 or -2 mutations do not affect immunohistochemical levels of 5-hmC, 5mC, trimethylation of H3K4, -K9 and K27 and outcome, as compared to wildtype.

14.
Antioxid Redox Signal ; 27(16): 1281-1296, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28376661

RESUMO

AIMS: Protein succination by fumarate increases in the adipose tissue of diabetic mice and in adipocytes matured in high glucose as a result of glucotoxicity-driven mitochondrial stress. The endoplasmic reticulum (ER) oxidoreductase protein disulfide isomerase (PDI) is succinated in adipocytes that are matured in high glucose, and in this study we investigated whether succination would alter PDI oxidoreductase activity, directly linking mitochondrial stress and ER stress. RESULTS: Protein succination and the ER stress marker C/EBP homologous protein (CHOP) were diminished after pharmaceutical targeting of mitochondrial stress with the chemical uncoupler niclosamide in adipocytes matured in high-glucose concentrations. PDI was succinated by fumarate on both CXXC-containing active sites, contributing to reduced enzymatic activity. Succinated PDI decreased reductase activity in adipocytes matured in high glucose, and in db/db epididymal adipose tissue, in association with increased levels of CHOP. PDI succination was increased in fumarase knockdown adipocytes, leading to reduced PDI oxidoreductase activity, increased CHOP levels, and pro-inflammatory cytokine secretion, confirming the specific role of elevated fumarate levels in contributing to ER stress. In addition, PDI succination and ER stress were decreased, and PDI reductase activity was restored when exposure to chronic high glucose was limited, highlighting the importance of calorie restriction in the improvement of adipocyte metabolic function. INNOVATION: These experiments identify PDI succination as a novel biochemical mechanism linking altered mitochondrial metabolism to ER stress in the adipocyte during diabetes. CONCLUSION: The current study demonstrates that early biochemical changes in mitochondrial metabolism have important implications for the development of adipocyte stress. Antioxid. Redox Signal. 27, 1281-1296.


Assuntos
Adipócitos/metabolismo , Diabetes Mellitus Experimental/metabolismo , Fumaratos/metabolismo , Mitocôndrias/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Células 3T3-L1 , Animais , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Glucose/farmacologia , Camundongos , Niclosamida/farmacologia , Estresse Oxidativo , Isomerases de Dissulfetos de Proteínas/química , Fator de Transcrição CHOP/metabolismo
15.
Cell Chem Biol ; 24(3): 306-315, 2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28219662

RESUMO

Enzymes of central carbon metabolism are essential mediators of Mycobacterium tuberculosis (Mtb) physiology and pathogenicity, but are often perceived to lack sufficient species selectivity to be pursued as potential drug targets. Fumarase (Fum) is an enzyme of the canonical tricarboxylic acid cycle and is dispensable in many organisms. Transposon mutagenesis studies in Mtb, however, indicate that Fum is required for optimal growth. Here, we report the generation and characterization of a genetically engineered Mtb strain in which Fum expression is conditionally regulated. This revealed that Fum deficiency is bactericidal in vitro and during both the acute and chronic phases of mouse infection. This essentiality is linked to marked accumulations of fumarate resulting in protein and metabolite succination, a covalent modification of cysteine thiol residues. These results identify Mtb Fum as a potentially species-specific drug target whose inactivation may kill Mtb through a covalently irreversible form of metabolic toxicity.


Assuntos
Proteínas de Bactérias/genética , Fumarato Hidratase/genética , Mycobacterium tuberculosis/genética , Animais , Proteínas de Bactérias/metabolismo , Cromatografia Líquida de Alta Pressão , Ciclo do Ácido Cítrico , Cisteína/química , Feminino , Fumarato Hidratase/deficiência , Fumarato Hidratase/metabolismo , Fumaratos/análise , Fumaratos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/patogenicidade , Estresse Oxidativo , Peptídeos/análise , Peptídeos/química , Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem
16.
Diabetes ; 65(11): 3396-3409, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27554470

RESUMO

Obesity and type 2 diabetes are associated with impaired mitochondrial function in adipose tissue. To study the effects of primary deficiency of mitochondrial energy metabolism in fat, we generated mice with adipose-specific deficiency of fumarate hydratase (FH), an integral Krebs cycle enzyme (AFHKO mice). AFHKO mice have severe ultrastructural abnormalities of mitochondria, ATP depletion in white adipose tissue (WAT) and brown adipose tissue, low WAT mass with small adipocytes, and impaired thermogenesis with large unilocular brown adipocytes. AFHKO mice are strongly protected against obesity, insulin resistance, and fatty liver despite aging and high-fat feeding. AFHKO white adipocytes showed normal lipolysis but low triglyceride synthesis. ATP depletion in normal white adipocytes by mitochondrial toxins also decreased triglyceride synthesis, proportionally to ATP depletion, suggesting that reduced triglyceride synthesis may result nonspecifically from adipocyte energy deficiency. At thermoneutrality, protection from insulin resistance and hepatic steatosis was diminished. Taken together, the results show that under the cold stress of regular animal room conditions, adipocyte-specific FH deficiency in mice causes mitochondrial energy depletion in adipose tissues and protects from obesity, hepatic steatosis, and insulin resistance, suggesting that in cold-stressed animals, mitochondrial function in adipose tissue is a determinant of fat mass and insulin sensitivity.


Assuntos
Tecido Adiposo Marrom/enzimologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/enzimologia , Tecido Adiposo Branco/metabolismo , Fígado Gorduroso/enzimologia , Fumarato Hidratase/deficiência , Obesidade/enzimologia , Trifosfato de Adenosina/metabolismo , Adipócitos/metabolismo , Animais , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Feminino , Fumarato Hidratase/genética , Fumarato Hidratase/metabolismo , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Lipólise/fisiologia , Masculino , Camundongos , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo , Triglicerídeos/metabolismo
17.
Br J Cancer ; 114(12): 1405-11, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27187686

RESUMO

BACKGROUND: Uterine leiomyomas from hereditary leiomyomatosis and renal cell cancer (HLRCC) patients are driven by fumarate hydratase (FH) inactivation or occasionally by mediator complex subunit 12 (MED12) mutations. The aim of this study was to analyse whether MED12 mutations and FH inactivation are mutually exclusive and to determine the contribution of MED12 mutations on HLRCC patients' myomagenesis. METHODS: MED12 exons 1 and 2 mutation screening and 2SC immunohistochemistry indicative for FH deficiency was performed on a comprehensive series of HLRCC patients' (122 specimens) and sporadic (66 specimens) tumours. Gene expression analysis was performed using Affymetrix GeneChip Human Exon Arrays (Affymetrix, Santa Clara, CA, USA). RESULTS: Nine tumours from HLRCC patients harboured a somatic MED12 mutation and were negative for 2SC immunohistochemistry. All remaining successfully analysed lesions (107/116) were deficient for FH. Of sporadic tumours, 35/64 were MED12 mutation positive and none displayed a FH defect. In global gene expression analysis FH-deficient tumours clustered together, whereas HLRCC patients' MED12 mutation-positive tumours clustered together with sporadic MED12 mutation-positive tumours. CONCLUSIONS: Somatic MED12 mutations and biallelic FH inactivation are mutually exclusive in both HLRCC syndrome-associated and sporadic uterine leiomyomas. The great majority of HLRCC patients' uterine leiomyomas are caused by FH inactivation, but incidental tumours driven by somatic MED12 mutations also occur. These MED12 mutation-positive tumours display similar expressional profiles with their sporadic counterparts and are clearly separate from FH-deficient tumours.


Assuntos
Biomarcadores Tumorais/genética , Fumarato Hidratase/metabolismo , Leiomioma/enzimologia , Leiomioma/genética , Complexo Mediador/genética , Neoplasias Uterinas/enzimologia , Neoplasias Uterinas/genética , Ativação Enzimática , Feminino , Mutação em Linhagem Germinativa , Humanos , Imuno-Histoquímica , Complexo Mediador/metabolismo , Mutação , Transcriptoma
18.
Am J Dermatopathol ; 38(12): 887-891, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27097334

RESUMO

AIMS: Hereditary leiomyomatosis and renal cell cancer (HLRCC) syndrome is an autosomal dominant disorder caused by heterozygotic germline mutations in fumarate hydratase (FH) with incomplete penetrance, and clinically challenging to diagnose. Immunohistochemical stainings may favor an earlier diagnosis. METHODS AND RESULTS: The authors have tested 31 smooth muscle neoplasms. Ten of the 13 lesions from patients with HLRCC syndrome showed negative FH staining. Most sporadic piloleiomyomas presented strongly positive FH staining although 5 cases were negative. Sensitivity of FH staining in our series is 83.3% but specificity is 75%. Anti-S-(2-succino)-cysteine (2SC) showed the opposite intensity staining pattern and showed great correlation with anti-FH (rho spearman = -0.797). Anti-2SC staining increased the diagnostic accuracy in 19% of the cases. LIMITATIONS: The main limitation of this study is the lack additional clinical data to further classify the cases as the case inclusion was histopathological. CONCLUSIONS: Negative FH staining could indicate a high risk of HLRCC but it could also suggest the presence of a syndrome in up to 25% of sporadic cases. Thus, when there is a doubtful case, anti-2SC may be added to exclude the syndrome if a negative staining is found.


Assuntos
Biomarcadores Tumorais/análise , Cisteína/análogos & derivados , Fumarato Hidratase/análise , Imuno-Histoquímica , Leiomiomatose/enzimologia , Processamento de Proteína Pós-Traducional , Neoplasias Cutâneas/enzimologia , Neoplasias Uterinas/enzimologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Cisteína/análise , Análise Mutacional de DNA , Regulação para Baixo , Detecção Precoce de Câncer , Feminino , Fumarato Hidratase/genética , Humanos , Leiomiomatose/genética , Leiomiomatose/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Síndromes Neoplásicas Hereditárias , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Neoplasias Uterinas/genética , Neoplasias Uterinas/patologia
19.
Am J Surg Pathol ; 40(7): 982-8, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26945337

RESUMO

Hereditary leiomyomatosis and renal cell carcinoma syndrome (HLRCC) is caused by germline mutations in the fumarate hydratase (FH) gene and predisposes to cutaneous and uterine leiomyomas and renal cell carcinoma (RCC). HLRCC-associated renal tumors are clinically aggressive, and patients would benefit from surveillance and early detection. Cutaneous leiomyomas that occur in association with HLRCC typically present early and are multiple. Thus far, the presence of certain morphologic features (large eosinophilic macronucleoli surrounded by halos and eosinophilic cytoplasmic inclusions) in RCC and uterine leiomyomas has been shown to correlate with FH mutations. Immunohistochemistry (IHC) for 2-succinocysteine (2SC) and FH has also been shown to correlate well with FH gene mutation status in RCC and uterine leiomyomas. The aim of this study was to assess the effectiveness of morphologic features and IHC at predicting FH gene mutations in cutaneous leiomyomas. We identified 22 patients with multiple cutaneous leiomyomas (40 total MCLs) and 25 patients with single leiomyomas (25 SCLs). Mutations in the FH gene were detected in 11 of 13 (85%) sequenced MCLs and 1 of 11 (9%) SCLs. A strong association was observed between 2SC positivity by IHC and presence of FH gene mutation (P=0.0028 for 2SC) but not with FH loss by IHC (P=0.4 for FH). All 11 MCLs with an FH mutation showed positive staining for 2SC, whereas 6 of 11 showed complete loss of FH staining. Our study suggests that the presence of MCLs should raise the possibility of HLRCC. IHC for FH and 2SC is helpful in detection of FH gene mutations and should be considered in all newly diagnosed cutaneous leiomyomas.


Assuntos
Cisteína/análogos & derivados , Fumarato Hidratase/análise , Leiomiomatose/diagnóstico , Síndromes Neoplásicas Hereditárias/diagnóstico , Neoplasias Cutâneas/diagnóstico , Neoplasias Uterinas/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/análise , Cisteína/análise , Cisteína/biossíntese , Análise Mutacional de DNA , Feminino , Fumarato Hidratase/genética , Predisposição Genética para Doença/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase
20.
J Community Support Oncol ; 14(2): 54-65, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26955658

RESUMO

BACKGROUND: The 3 fluoroquinolone (FQ) antibiotics - ciprofoxacin, levofoxacin, and moxifoxacin - are commonly administered to oncology patients. Although these oral antibiotics are approved by the US Food and Drug Administration (FDA) for treatment of urinary tract infections, acute bacterial sinusitis, or bacterial infection in patients with chronic obstructive pulmonary disease, they are commonly prescribed off-label to neutropenic cancer patients for the prevention and treatment of infections associated with febrile neutropenia. New serious FQ-associated safety concerns have been identified through novel collaborations between FQ-treated persons who have developed long-term neuropsychiatric (NP) toxicity, pharmacovigilance experts, and basic scientists. OBJECTIVE: To conduct basic science and clinical investigations of a newly identified adverse drug reaction, termed FQ-associated disability. METHODS: 5 groups of C57BL/6 mice receiving the antibiotic ciprofoxacin in 10-mg increments (10 mg/kg-50 mg/kg) and 1 group of control mice were evaluated. The Southern Network on Adverse Reactions (SONAR) and a social network of FQ-treated persons with long-term NP toxicity (the Floxed Network) conducted a web-based survey. The clinical toxicity manifestations reported by 94 respondents to the web-based survey of persons who had received 1 or more doses of an FQ prescribed for any indication (generally at FDA-approved dosages) and who subsequently experienced possible adverse drug reactions were compared with adverse event information included on the product label for levofoxacin and with FQ-associated adverse events reported to the FDA's MedWatch program. RESULTS: Mice treated with ciprofoxacin had lower grip strengths, reduced balance, and depressive behavior compared with the controls. For the survey, 93 of 94 respondents reported FQ-associated events including anxiety, depression, insomnia, panic attacks, clouded thinking, depersonalization, suicidal thoughts, psychosis, nightmares, and impaired memory beginning within days of FQ initiation or days to months of FQ discontinuation. The FDA Adverse Event Reporting System (FAERS) included 210,705 adverse events and 2,991 fatalities for FQs. Levofoxacin and ciprofoxacin toxicities were neurologic (30% and 26%, respectively), tendon damage (8% and 6%), and psychiatric (10% and 2%). In 2013, an FDA safety review reported that FQs affect mammalian topoisomerase II, especially in mitochondria. In 2013 and 2014, SONAR fled citizen petitions requesting black box revisions identifying neuropsychiatric toxicities and mitochrondrial toxicity as serious levofoxacin-associated adverse drug reactions. In 2015, FDA advisors recommended that FQ product labels be revised to include information about this newly identified disability syndrome termed "FQ-associated disability" (FQAD). LIMITATIONS: Basic science studies evaluated NP toxicity for only 1 FQ, ciprofoxacin. CONCLUSION: Pharmacovigilance investigators, a social network, and basic scientists can collaborate on pharmacovigilance investigations. Revised product labels describing a new serious adverse drug reaction, levofoxacin-associated long-term disability, as recommended by an FDA advisory committee, are advised.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...